Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631765

RESUMO

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Assuntos
Doença de Pick , Tauopatias , Masculino , Humanos , Feminino , Proteínas tau/metabolismo , Doença de Pick/genética , Haplótipos , Estudos de Associação Genética
2.
Acta Neuropathol ; 147(1): 58, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520489

RESUMO

Neurodegenerative pathologies such as Alzheimer disease neuropathologic change (ADNC), Lewy body disease (LBD), limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and cerebrovascular disease (CVD) frequently coexist, but little is known about the exact contribution of each pathology to cognitive decline and dementia in subjects with mixed pathologies. We explored the relative cognitive impact of concurrent common and rare neurodegenerative pathologies employing multivariate logistic regression analysis adjusted for age, gender, and level of education. We analyzed a cohort of 6,262 subjects from the National Alzheimer's Coordinating Center database, ranging from 0 to 6 comorbid neuropathologic findings per individual, where 95.7% of individuals had at least 1 neurodegenerative finding at autopsy and 75.5% had at least 2 neurodegenerative findings. We identified which neuropathologic entities correlate most frequently with one another and demonstrated that the total number of pathologies per individual was directly correlated with cognitive performance as assessed by Clinical Dementia Rating (CDR®) and Mini-Mental State Examination (MMSE). We show that ADNC, LBD, LATE-NC, CVD, hippocampal sclerosis, Pick disease, and FTLD-TDP significantly impact overall cognition as independent variables. More specifically, ADNC significantly affected all assessed cognitive domains, LBD affected attention, processing speed, and language, LATE-NC primarily affected tests related to logical memory and language, while CVD and other less common pathologies (including Pick disease, progressive supranuclear palsy, and corticobasal degeneration) had more variable neurocognitive effects. Additionally, ADNC, LBD, and higher numbers of comorbid neuropathologies were associated with the presence of at least one APOE ε4 allele, and ADNC and higher numbers of neuropathologies were inversely correlated with APOE ε2 alleles. Understanding the mechanisms by which individual and concomitant neuropathologies affect cognition and the degree to which each contributes is an imperative step in the development of biomarkers and disease-modifying therapeutics, particularly as these medical interventions become more targeted and personalized.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Demência , Demência Frontotemporal , Doença por Corpos de Lewy , Doença de Pick , Proteinopatias TDP-43 , Humanos , Doença de Pick/patologia , Encéfalo/patologia , Doença de Alzheimer/patologia , Doença por Corpos de Lewy/complicações , Doença por Corpos de Lewy/patologia , Demência Frontotemporal/patologia , Cognição
3.
medRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464214

RESUMO

Importance: The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, ß, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study. Objective: To assess the association of different structural forms of 17q.21.31, defined by the copy numbers of α, ß, and γ duplications, with the risk of PSP and MAPT sub-haplotypes. Design setting and participants: Utilizing whole genome sequencing data of 1,684 (1,386 autopsy confirmed) individuals with PSP and 2,392 control subjects, a case-control study was conducted to investigate the association of copy numbers of α, ß, and γ duplications and structural forms of 17q21.31 with the risk of PSP. All study subjects were selected from the Alzheimer's Disease Sequencing Project (ADSP) Umbrella NG00067.v7. Data were analyzed between March 2022 and November 2023. Main outcomes and measures: The main outcomes were the risk (odds ratios [ORs]) for PSP with 95% CIs. Risks for PSP were evaluated by logistic regression models. Results: The copy numbers of α and ß were associated with the risk of PSP only due to their correlation with H1 and H2, while the copy number of γ was independently associated with the increased risk of PSP. Each additional duplication of γ was associated with 1.10 (95% CI, 1.04-1.17; P = 0.0018) fold of increased risk of PSP when conditioning H1 and H2. For the H1 haplotype, addition γ duplications displayed a higher odds ratio for PSP: the odds ratio increases from 1.21 (95%CI 1.10-1.33, P = 5.47 × 10-5) for H1ß1γ1 to 1.29 (95%CI 1.16-1.43, P = 1.35 × 10-6) for H1ß1γ2, 1.45 (95%CI 1.27-1.65, P = 3.94 × 10-8) for H1ß1γ3, and 1.57 (95%CI 1.10-2.26, P = 1.35 × 10-2) for H1ß1γ4. Moreover, H1ß1γ3 is in linkage disequilibrium with H1c (R2 = 0.31), a widely recognized MAPT sub-haplotype associated with increased risk of PSP. The proportion of MAPT sub-haplotypes associated with increased risk of PSP (i.e., H1c, H1d, H1g, H1o, and H1h) increased from 34% in H1ß1γ1 to 77% in H1ß1γ4. Conclusions and relevance: This study revealed that the copy number of γ was associated with the risk of PSP independently from H1 and H2. The H1 haplotype with more γ duplications showed a higher odds ratio for PSP and were associated with MAPT sub-haplotypes with increased risk of PSP. These findings expand our understanding of how the complex structure at 17q21.31 affect the risk of PSP.

4.
medRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234807

RESUMO

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.

5.
Alzheimers Dement ; 20(2): 783-797, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777848

RESUMO

INTRODUCTION: Alzheimer's disease (AD) and primary age-related tauopathy (PART) both harbor 3R/4R hyperphosphorylated-tau (p-tau)-positive neurofibrillary tangles (NFTs) but differ in the spatial p-tau development in the hippocampus. METHODS: Using Nanostring GeoMx Digital Spatial Profiling, we compared protein expression within hippocampal subregions in NFT-bearing and non-NFT-bearing neurons in AD (n = 7) and PART (n = 7) subjects. RESULTS: Proteomic measures of synaptic health were inversely correlated with the subregional p-tau burden in AD and PART, and there were numerous differences in proteins involved in proteostasis, amyloid beta (Aß) processing, inflammation, microglia, oxidative stress, and neuronal/synaptic health between AD and PART and between definite PART and possible PART. DISCUSSION: These results suggest subfield-specific proteome differences that may explain some of the differences in Aß and p-tau distribution and apparent pathogenicity. In addition, hippocampal neurons in possible PART may have more in common with AD than with definite PART, highlighting the importance of Aß in the pathologic process. HIGHLIGHTS: Synaptic health is inversely correlated with local p-tau burden. The proteome of NFT- and non-NFT-bearing neurons is influenced by the presence of Aß in the hippocampus. Neurons in possible PART cases share more proteomic similarities with neurons in ADNC than they do with neurons in definite PART cases.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteômica , Proteoma , Proteínas tau/metabolismo , Tauopatias/patologia , Emaranhados Neurofibrilares/patologia , Hipocampo/patologia
6.
J Biol Chem ; 300(1): 105545, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072056

RESUMO

Neurodegenerative tauopathies such as Alzheimer's disease (AD) are caused by brain accumulation of tau assemblies. Evidence suggests tau functions as a prion, and cells and animals can efficiently propagate unique, transmissible tau pathologies. This suggests a dedicated cellular replication machinery, potentially reflecting a normal physiologic function for tau seeds. Consequently, we hypothesized that healthy control brains would contain seeding activity. We have recently developed a novel monoclonal antibody (MD3.1) specific for tau seeds. We used this antibody to immunopurify tau from the parietal and cerebellar cortices of 19 healthy subjects without any neuropathology, ranging 19 to 65 years. We detected seeding in lysates from the parietal cortex, but not in the cerebellum. We also detected no seeding in brain homogenates from wildtype or human tau knockin mice, suggesting that cellular/genetic context dictates development of seed-competent tau. Seeding did not correlate with subject age or brain tau levels. We confirmed our essential findings using an orthogonal assay, real-time quaking-induced conversion, which amplifies tau seeds in vitro. Dot blot analyses revealed no AT8 immunoreactivity above background levels in parietal and cerebellar extracts and ∼1/100 of that present in AD. Based on binding to a panel of antibodies, the conformational characteristics of control seeds differed from AD, suggesting a unique underlying assembly, or structural ensemble. Tau's ability to adopt self-replicating conformations under nonpathogenic conditions may reflect a normal function that goes awry in disease states.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Cerebelo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/metabolismo , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
7.
Sci Adv ; 9(43): eadh3457, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889966

RESUMO

α-Synuclein (aSyn) aggregation underlies neurodegenerative synucleinopathies. aSyn seeds are proposed to replicate and propagate neuronal pathology like prions. Seeding of aSyn can be recapitulated in cellular systems of aSyn aggregation; however, the mechanism of aSyn seeding and its regulation are not well understood. We developed an mEos-based aSyn seeding assay and performed saturation mutagenesis to identify with single-residue resolution positive and negative regulators of aSyn aggregation. We not only found the core regions that govern aSyn aggregation but also identified mutants outside of the core that enhance aggregation. We identified local structure within the N terminus of aSyn that hinders the fibrillization propensity of its aggregation-prone core. Based on the screen, we designed a minimal aSyn fragment that shows a ~4-fold enhancement in seeding activity and enabled discrimination of synucleinopathies. Our study expands the basic knowledge of aSyn aggregation and advances the design of cellular systems of aSyn aggregation to diagnose synucleinopathies based on protein conformation.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Sinucleinopatias/metabolismo , Mutagênese , Conformação Proteica , Neurônios/metabolismo
8.
Acta Neuropathol ; 146(6): 785-802, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37815677

RESUMO

Understanding age acceleration, the discordance between biological and chronological age, in the brain can reveal mechanistic insights into normal physiology as well as elucidate pathological determinants of age-related functional decline and identify early disease changes in the context of Alzheimer's and other disorders. Histopathological whole slide images provide a wealth of pathologic data on the cellular level that can be leveraged to build deep learning models to assess age acceleration. Here, we used a collection of digitized human post-mortem hippocampal sections to develop a histological brain age estimation model. Our model predicted brain age within a mean absolute error of 5.45 ± 0.22 years, with attention weights corresponding to neuroanatomical regions vulnerable to age-related changes. We found that histopathologic brain age acceleration had significant associations with clinical and pathologic outcomes that were not found with epigenetic based measures. Our results indicate that histopathologic brain age is a powerful, independent metric for understanding factors that contribute to brain aging.


Assuntos
Envelhecimento , Encéfalo , Humanos , Pré-Escolar , Envelhecimento/patologia , Encéfalo/patologia , Epigenômica , Aceleração , Autopsia , Epigênese Genética , Metilação de DNA
9.
J Biol Chem ; 299(11): 105252, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37714465

RESUMO

Neurodegenerative tauopathies are caused by the transition of tau protein from a monomer to a toxic aggregate. They include Alzheimer disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick disease (PiD). We have previously proposed that tau monomer exists in two conformational ensembles: an inert form (Mi), which does not self-assemble, and seed-competent form (Ms), which self-assembles and templates ordered assembly growth. We proposed that cis/trans isomerization of tau at P301, the site of dominant disease-associated S/L missense mutations, might underlie the transition of wild-type tau to a seed-competent state. Consequently, we created monoclonal antibodies using non-natural antigens consisting of fluorinated proline (P∗) at the analogous P270 in repeat 1 (R1), biased toward the trans-configuration at either the R1/R2 (TENLKHQP∗GGGKVQIINKK) or the R1/R3 (TENLKHQP∗GGGKVQIVYK) interfaces. Two antibodies, MD2.2 and MD3.1, efficiently immunoprecipitated soluble seeds from AD and PSP but not CBD or PiD brain samples. The antibodies efficiently stained brain samples of AD, PSP, and PiD, but not CBD. They did not immunoprecipitate or immunostain tau from the control brain. Creation of potent anti-seed antibodies based on the trans-proline epitope implicates local unfolding around P301 in pathogenesis. MD2.2 and MD3.1 may also be useful for therapy and diagnosis.


Assuntos
Tauopatias , Humanos , Doença de Alzheimer/metabolismo , Anticorpos Monoclonais/metabolismo , Encéfalo/metabolismo , Epitopos/metabolismo , Doença de Pick/metabolismo , Doença de Pick/patologia , Prolina/metabolismo , Proteínas tau/metabolismo , Tauopatias/metabolismo
10.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693404

RESUMO

Background: Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu can happen within hours. A cellular machinery might regulate this process, but potential players are unknown. Methods: We used proximity labeling to identify factors that control seed amplification. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity upon seeded intracellular tau aggregation. We identified valosin containing protein (VCP/p97) 5h after seeding. Mutations in VCP underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We utilized tau biosensors, a cellular model for tau aggregation, to study the effects of VCP on tau seeding. Results: VCP knockdown reduced tau seeding. However, distinct chemical inhibitors of VCP and the proteasome had opposing effects on aggregation, but only when given <8h of seed exposure. ML-240 increased seeding efficiency ~40x, whereas NMS-873 decreased seeding efficiency by 50%, and MG132 increased seeding ~10x. We screened VCP co-factors in HEK293 biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. Reduction of FAF2 and UBXN6 increased tau seeding. Conclusions: VCP uses distinct cofactors to determine seed replication efficiency, consistent with a dedicated cytoplasmic processing complex that directs seeds towards dissolution vs. amplification.

11.
Elife ; 122023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387473

RESUMO

Neurodegenerative tauopathies are caused by accumulation of toxic tau protein assemblies. This appears to involve template-based seeding events, whereby tau monomer changes conformation and is recruited to a growing aggregate. Several large families of chaperone proteins, including Hsp70s and J domain proteins (JDPs), cooperate to regulate the folding of intracellular proteins such as tau, but the factors that coordinate this activity are not well known. The JDP DnaJC7 binds tau and reduces its intracellular aggregation. However, it is unknown whether this is specific to DnaJC7 or if other JDPs might be similarly involved. We used proteomics within a cell model to determine that DnaJC7 co-purified with insoluble tau and colocalized with intracellular aggregates. We individually knocked out every possible JDP and tested the effect on intracellular aggregation and seeding. DnaJC7 knockout decreased aggregate clearance and increased intracellular tau seeding. This depended on the ability of the J domain (JD) of DnaJC7 to stimulate Hsp70 ATPase activity, as JD mutations that block this interaction abrogated the protective activity. Disease-associated mutations in the JD and substrate binding site of DnaJC7 also abolished its protective activity. DnaJC7 thus specifically regulates tau aggregation in cooperation with Hsp70.


Assuntos
Tauopatias , Proteínas tau , Humanos , Proteínas tau/metabolismo , Tauopatias/metabolismo , Proteínas de Choque Térmico HSP70/genética
12.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993367

RESUMO

Neurodegenerative tauopathies are caused by accumulation of toxic tau protein assemblies. This appears to involve template-based seeding events, whereby tau monomer changes conformation and is recruited to a growing aggregate. Several large families of chaperone proteins, including Hsp70s and J domain proteins (JDPs) cooperate to regulate the folding of intracellular proteins such as tau, but the factors that coordinate this activity are not well known. The JDP DnaJC7 binds tau and reduces its intracellular aggregation. However, it is unknown whether this is specific to DnaJC7 or if other JDPs might be similarly involved. We used proteomics within a cell model to determine that DnaJC7 co-purified with insoluble tau and colocalized with intracellular aggregates. We individually knocked out every possible JDP and tested the effect on intracellular aggregation and seeding. DnaJC7 knockout decreased aggregate clearance and increased intracellular tau seeding. This depended on the ability of the J domain (JD) of DnaJC7 to bind to Hsp70, as JD mutations that block binding to Hsp70 abrogated the protective activity. Disease-associated mutations in the JD and substrate binding site of DnaJC7 also abrogated its protective activity. DnaJC7 thus specifically regulates tau aggregation in cooperation with Hsp70.

13.
Alzheimers Dement ; 19(7): 3158-3170, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36738450

RESUMO

INTRODUCTION: Neurofibrillary degeneration in Alzheimer's disease (AD) typically involves the entorhinal cortex and CA1 subregion of the hippocampus early in the disease process, whereas in primary age-related tauopathy (PART), there is an early selective vulnerability of the CA2 subregion. METHODS: Image analysis-based quantitative pixel assessments were used to objectively evaluate amyloid beta (Aß) burden in the medial temporal lobe in relation to the distribution of hyperphosphorylated-tau (p-tau) in 142 cases of PART and AD. RESULTS: Entorhinal, CA1, CA3, and CA4 p-tau deposition levels are significantly correlated with Aß burden, while CA2 p-tau is not. Furthermore, the CA2/CA1 p-tau ratio is inversely correlated with Aß burden and distribution. In addition, cognitive impairment is correlated with overall p-tau burden. DISCUSSION: These data indicate that the presence and extent of medial temporal lobe Aß may determine the distribution and spread of neurofibrillary degeneration. The resulting p-tau distribution patterns may discriminate between PART and AD. HIGHLIGHTS: Subregional hyperphosphorylated-tau (p-tau) distribution is influenced by hippocampal amyloid beta burden. Higher CA2/CA1 p-tau ratio is predictive of primary age-related tauopathy-like neuropathology. Cognitive function is correlated with the overall hippocampal p-tau burden.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Hipocampo/patologia , Tauopatias/patologia
14.
Nat Commun ; 14(1): 895, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797278

RESUMO

Cryogenic electron microscopy has revealed unprecedented molecular insight into the conformations of ß-sheet-rich protein amyloids linked to neurodegenerative diseases. It remains unknown how a protein can adopt a diversity of folds and form multiple distinct fibrillar structures. Here we develop an in silico alanine scan method to estimate the relative energetic contribution of each amino acid in an amyloid assembly. We apply our method to twenty-seven ex vivo and in vitro fibril structural polymorphs of the microtubule-associated protein tau. We uncover networks of energetically important interactions involving amyloid-forming motifs that stabilize the different fibril folds. We evaluate our predictions in cellular and in vitro aggregation assays. Using a machine learning approach, we classify the structures based on residue energetics to identify distinguishing and unifying features. Our energetic profiling suggests that minimal sequence elements control the stability of tau fibrils, allowing future design of protein sequences that fold into unique structures.


Assuntos
Amiloide , Proteínas tau , Amiloide/metabolismo , Proteínas tau/metabolismo , Sequência de Aminoácidos , Proteínas Amiloidogênicas , Conformação Proteica em Folha beta , Conformação Molecular , Peptídeos beta-Amiloides/metabolismo
15.
J Neuropathol Exp Neurol ; 82(3): 202-211, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36692179

RESUMO

Digital pathology (DP) has transformative potential, especially for Alzheimer disease and related disorders. However, infrastructure barriers may limit adoption. To provide benchmarks and insights into implementation barriers, a survey was conducted in 2019 within National Institutes of Health's Alzheimer's Disease Centers (ADCs). Questions covered infrastructure, funding sources, and data management related to digital pathology. Of the 35 ADCs to which the survey was sent, 33 responded. Most respondents (81%) stated that their ADC had digital slide scanner access, with the most frequent brand being Aperio/Leica (62.9%). Approximately a third of respondents stated there were fees to utilize the scanner. For DP and machine learning (ML) resources, 41% of respondents stated none was supported by their ADC. For scanner purchasing and operations, 50% of respondents stated they received institutional support. Some were unsure of the file size of scanned digital images (37%) and total amount of storage space files occupied (50%). Most (76%) were aware of other departments at their institution working with ML; a similar (76%) percentage were unaware of multiuniversity or industry partnerships. These results demonstrate many ADCs have access to a digital slide scanner; additional investigations are needed to further understand hurdles to implement DP and ML workflows.


Assuntos
Doença de Alzheimer , Humanos , Fluxo de Trabalho , Aprendizado de Máquina , Inquéritos e Questionários
16.
Acta Neuropathol ; 145(2): 159-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512061

RESUMO

An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Doença de Alzheimer/patologia , Demência Frontotemporal/patologia , Esclerose Amiotrófica Lateral/patologia , Proteínas de Ligação a DNA/genética
17.
Sci Rep ; 12(1): 17675, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319674

RESUMO

A definitive diagnosis of Alzheimer's disease (AD), even in the presence of co-morbid neuropathology (occurring in > 50% of AD cases), is a significant unmet medical need that has obstructed the discovery of effective AD therapeutics. An AD-biomarker, the Morphometric Imaging (MI) assay on cultured skin fibroblasts, was used in a double-blind, allcomers (ages 55-90) trial of 3 patient cohorts: AD dementia patients, N = 25, all autopsy confirmed, non-AD dementia patients, N = 21-all autopsy or genetically confirmed; and non-demented control (AHC) patients N = 27. Fibroblasts cells isolated from 3-mm skin punch biopsies were cultured on a 3-D Matrigel matrix with movement dynamics quantified by image analysis. From counts of all aggregates (N) in a pre-defined field image and measures of the average area (A) of aggregates per image, the number-to-area ratios in a natural logarithmic form Ln(A/N) were determined for all patient samples. AD cell lines formed fewer large aggregates (cells clustered together) than non-AD or AHC cell lines. The cut-off value of Ln(A/N) = 6.98 was determined from the biomarker values of non-demented apparently healthy control (AHC) cases. Unequivocal validation by autopsy, genetics, and/or dementia criteria was possible for all 73 patient samples. The samples were collected from multiple centers-four US centers and one center in Japan. The study found no effect of center-to-center variation in fibroblast isolation, cell growth, or cell aggregation values (Ln(A/N)). The autopsy-confirmed MI Biomarker distinguished AD from non-AD dementia (non-ADD) patients and correctly diagnosed AD even in the presence of other co-morbid pathologies at autopsy (True Positive = 25, False Negative = 0, False Positive = 0, True Negative = 21, and Accuracy = 100%. Sensitivity and specificity were calculated as 100% (95% CI = 84 to 100.00%). From these findings, the MI assay appears to detect AD with great accuracy-even with abundant co-morbidity.


Assuntos
Doença de Alzheimer , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Doença de Alzheimer/patologia , Autopsia , Biomarcadores , Neuropatologia , Sensibilidade e Especificidade , Método Duplo-Cego
18.
Acta Neuropathol Commun ; 10(1): 157, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316708

RESUMO

Tauopathies are a category of neurodegenerative diseases characterized by the presence of abnormal tau protein-containing neurofibrillary tangles (NFTs). NFTs are universally observed in aging, occurring with or without the concomitant accumulation of amyloid-beta peptide (Aß) in plaques that typifies Alzheimer disease (AD), the most common tauopathy. Primary age-related tauopathy (PART) is an Aß-independent process that affects the medial temporal lobe in both cognitively normal and impaired subjects. Determinants of symptomology in subjects with PART are poorly understood and require clinicopathologic correlation; however, classical approaches to staging tau pathology have limited quantitative reproducibility. As such, there is a critical need for unbiased methods to quantitatively analyze tau pathology on the histological level. Artificial intelligence (AI)-based convolutional neural networks (CNNs) generate highly accurate and precise computer vision assessments of digitized pathology slides, yielding novel histology metrics at scale. Here, we performed a retrospective autopsy study of a large cohort (n = 706) of human post-mortem brain tissues from normal and cognitively impaired elderly individuals with mild or no Aß plaques (average age of death of 83.1 yr, range 55-110). We utilized a CNN trained to segment NFTs on hippocampus sections immunohistochemically stained with antisera recognizing abnormal hyperphosphorylated tau (p-tau), which yielded metrics of regional NFT counts, NFT positive pixel density, as well as a novel graph-theory based metric measuring the spatial distribution of NFTs. We found that several AI-derived NFT metrics significantly predicted the presence of cognitive impairment in both the hippocampus proper and entorhinal cortex (p < 0.0001). When controlling for age, AI-derived NFT counts still significantly predicted the presence of cognitive impairment (p = 0.04 in the entorhinal cortex; p = 0.04 overall). In contrast, Braak stage did not predict cognitive impairment in either age-adjusted or unadjusted models. These findings support the hypothesis that NFT burden correlates with cognitive impairment in PART. Furthermore, our analysis strongly suggests that AI-derived metrics of tau pathology provide a powerful tool that can deepen our understanding of the role of neurofibrillary degeneration in cognitive impairment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Tauopatias , Humanos , Idoso , Emaranhados Neurofibrilares/patologia , Inteligência Artificial , Estudos Retrospectivos , Reprodutibilidade dos Testes , Proteínas tau/análise , Tauopatias/patologia , Doença de Alzheimer/patologia , Placa Amiloide/patologia , Disfunção Cognitiva/patologia
20.
Acta Neuropathol Commun ; 10(1): 146, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221144

RESUMO

Relapsing remitting multiple sclerosis (MS) is an inflammatory demyelinating disorder of the central nervous system that in many cases leads to progressive MS, a neurodegenerative disease. Progressive MS is untreatable and relentless, and its cause is unknown. Prior studies of MS have documented neuronal accumulation of phosphorylated tau protein, which characterizes another heterogeneous group of neurogenerative disorders, the tauopathies. Known causes of tauopathy are myriad, and include point mutations within the tau gene, amyloid beta accumulation, repeated head trauma, and viral infection. We and others have proposed that tau has essential features of a prion. It forms intracellular assemblies that can exit a cell, enter a secondary cell, and serve as templates for their own replication in a process termed "seeding." We have previously developed specialized "biosensor" cell systems to detect and quantify tau seeds in brain tissues. We hypothesized that progressive MS is a tauopathy, potentially triggered by inflammation. We tested for and detected tau seeding in frozen brain tissue of 6/8 subjects with multiple sclerosis. We then evaluated multiple brain regions from a single subject for whom we had detailed clinical history. We observed seeding outside of MS plaques that was enriched by immunopurification with two anti-tau antibodies (HJ8.5 and MD3.1). Immunohistochemistry with AT8 and MD3.1 confirmed prior reports of tau accumulation in MS. Although larger studies are required, our data suggest that progressive MS may be considered a secondary tauopathy.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Príons , Tauopatias , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Esclerose Múltipla/metabolismo , Doenças Neurodegenerativas/metabolismo , Príons/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...